2、例题剖析:例2.直线 y=-x与双曲线y=-的两个交点都在抛物线y=ax2+bx+c上,若抛物线顶点到y轴的距离为2,求此抛物线的分析式。剖析:两函数图象交点的求法就是将两函数的分析式联立成方程组,方程组的解既为交点坐标。解:∵直线y=-x与双曲线y=-的交点都在抛物线y=ax2+bx+c上,由解这个方程组,得x=1.当x=1时,y=-1.当x=-1时,y=1.经检验:都是原方程的解。设两交点为A、B,A(1,-1),B(-1,1)。又∵抛物线顶点到y轴的距离为2, 抛物线的对称轴为直线x=2或x=-2,当对称轴为直线x=2时,设所求的抛物线分析式为y=a(x-2)2+k,又∵过A(1,-1),B(-1,1), 解方程组得 抛物线的分析式为y=(x-2)2-即 y=x2-x-.当对称轴为直线x=-2时,设所求抛物线分析式为y=a(x+2)2+k,则有 解方程组得, 抛物线分析式为y=-(x+2)2+y=-x2-x+.所求抛物线分析式为:y=x2-x-或y=-x2-x+。说明:在求直线和双曲线的交点时,需列出方程组,通过解方程组求出x, y值,双曲线的分析式为分式方程,所以所求x, y值需检验。抛物线顶点到y轴距离为2,所以对称轴可在y轴左边或右边,所以要分类讨论,求出抛物线的两个分析式。